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ABSTRACT 
According to current regulatory expectations, continued process verification (CPV) must guarantee post-qualification 
monitoring of critical process parameters (CPP). Such parameters are not easy identifiable in biotechnological pro-
cesses given its inherent complexities. Therefore, this work was aimed to bring methods for an effective determina-
tion of CPP thus providing the necessary groundwork for elaborating a CPV strategy. Knowledge and experience 
accumulated along the lifecycle of a legacy monoclonal antibody product were applied, focusing on its first stages 
of downstream purification. Process parameters defined for analysis were ranked through a cause-effect risk ma-
trix and criticality levels deduced using Pareto distribution. Subsequently, data from three consecutive production 
campaigns were processed by the principal component analysis (PCA) method for a comprehensive characteriza-
tion of process variability, as well as clusters analysis and soft independent modeling of class analogy (SIMCA) 
methods for differentiating operational modes among campaigns. A set of 13 process parameters were confirmed 
as CPP, given its major impact on process variability, while the remaining five were considered as key operat-
ing parameters (KOP). Such outcome, achieved theoretically, was corroborated with process actual operational 
incidences, contributing to elaborate a well-founded monitoring plan for assuring CPV and its viable execution.  

Keywords: monoclonal antibody purification, continued process verification, cause-effect risk matrix,  
principal component analysis, cluster analysis, soft independent modelling of class analogy
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RESUMEN     
Estrategia de verificación continuada del proceso en las primeras etapas de la purificación de un anti-
cuerpo monoclonal mediante la integración del análisis de riesgo y el análisis multivariado de datos. 
De acuerdo a las expectativas regulatorias actuales, la verificación continuada del proceso (VCP) debe asegurar el 
monitoreo post-calificación de los parámetros críticos del proceso (PCP). Estos no son fácilmente identificables en 
los procesos biotecnológicos dadas sus inherentes complejidades. Ante esta problemática, el presente trabajo está 
dirigido a aportar métodos para la efectiva determinación de estos PCP, proporcionando así las bases necesarias 
para la elaboración de una sólida estrategia de VCP. Se integró el conocimiento y la experiencia acumulados du-
rante el ciclo de vida de un producto monoclonal ya registrado bajo estándares anteriores. La estrategia se enfocó 
a las primeras etapas de purificación, cuyos parámetros del proceso definidos para el análisis fueron categorizados 
mediante una matriz de riesgo de causa-efecto y los niveles de criticidad deducidos utilizando el criterio de Pareto. 
Seguidamente, se procesaron los datos de tres campañas productivas mediante el método de análisis de compo-
nentes principales (ACP) para una caracterización integral de la variabilidad del proceso. También se aplicó los 
métodos de análisis de clústeres, y de modelación independiente y flexible de analogía de clases (MIFAC) para la 
diferenciación de modos operacionales entre campañas. Se logró confirmar un grupo de 13 parámetros críticos por 
su mayor impacto en la variabilidad del proceso, mientras que los cinco parámetros restantes fueron considerados 
como parámetros operacionales claves (POC). Dicho resultado, logrado sobre bases teóricas, fue corroborado con 
las incidencias operativas reales del proceso, y contribuyó a la elaboración de un plan de monitoreo bien funda-
mentado para asegurar la VCP y su ejecución viable.

Palabras clave: purificación de anticuerpos monoclonales, verificación continuada del proceso,  
matriz de riesgos de causa-efecto, análisis de componentes principales, análisis de clústeres,  

modelación independiente y flexible de analogía de clases

Introduction
Process validation have been defined by the main reg-
ulatory agencies (i.e., Food and Drug Administration 
(FDA) and the European Medicines Agency (EMA)) 
as a three stages exercise in full correspondence with 

product and manufacturing process lifecycle [1-4]. 
They have also encouraged the application of qual-
ity risk management and most modern development 
principles.

1. FDA Guidance for industry. Process 
validation: general principles and practice. 
U.S. Department of Health and Human 
Services. January 2011.
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In such renovated concept, continued process veri-
fication (CPV) last stage has received special attention 
to continuously guarantee that the process remains 
under control during routine production. Therefore, 
there is a need of implementing an effective post-qual-
ification monitoring of process parameters, with sig-
nificant impact on product’s critical quality attributes 
(CQA) [5]. However, these parameters are not so easy 
to identify in highly complex processes as those ap-
plied in the biotechnological field [6]. In fact, there are 
still manufacturers that fail to implement CPV as can 
be seen in the significant amount of FDA’s warning 
letters, due to poor critical process parameters (CPP) 
identification derived from insufficient process under-
standing [7].

There are examples on using risk models and design 
of experiments (DoE) for such identification mainly at 
the first stage of process development [8-10], or even 
at later stages taking advantage of the long history 
from developing to manufacturing, as it is the case 
of legacy products [11, 12].  Moreover, the multivari-
ate nature characterizing most biotechnological unit 
operations is an unquestionable issue to deal with, as 
substantial correlations among process parameters 
and other difficulties related to handling large vol-
ume of data limit the traditional statistic’s application. 
These explain the increasing relevance that multivari-
ate data analysis (MVDA) approach has acquired in 
the biotechnology and biopharmaceutical domain [13, 
14]. Several applications have been described in this 
field, such as omics at the development stage, where 
MVDA provides the tools for a significant complexity 
reduction in data processing [15-18]. Yet, there are a 
discrete number of published references dealing with 
process characterization at the commercial manufac-
turing stage [19, 20].

Therefore, the present work was aimed to provide 
practical means to overcome such difficulties inherent 
to CPP determination in an existing downstream first 
purification process of a legacy monoclonal antibody 
commercial product (mAb). It showed the advantag-
es of integrating process knowledge and experience 
throughout product lifecycle in a risk influence matrix 
model, along with data processing from annual pro-
duction campaigns based on MVDA tools. 

Materials and methods

Description of purification stages under study
Following a prescribed strategy to cope with a poten-
tial increase of mAb production, the present work fo-
cused on downstream purification first stages within 
bulk manufacturing process, technologically adapted 
to guarantee a successful performance on final prod-
uct yield and the removal of most impurities [21]. 
The implemented configuration is shown in figure 
1, where first purification unit operations consist of 
IgG capture by protein A chromatographic affinity 
(Novasep, France) followed by elution and anion 
exchange using chromatographic membranes (Sar-
torius, Germany) as main steps, which also include 
acid viral inactivation and pH/conductivity adjust-
ment intermediate operations before anion exchange. 
Due to batch mode predominance, a certain IgG mass 
input is required by harvest volume pooling, in order 

to guarantee the efficient operation of protein A col-
umn matrices.

Cause-effect risk matrix and Pareto methods
For performing this exercise, a working group of 
three specialists of high and adequate professional 
degree (PhD.) and more than 10 years of experience 
in downstream processing was established. They con-
tributed with their knowledge assimilated throughout 
product/process lifecycle, to criticality assess of bulk 
final product quality attributes, as well as impact of 
process parameters on them. Guided by Mitchell’s 
work [9], index allocation tables were previously 
elaborated under consensus of the working group in 
order to facilitate evaluation, as shown in table 1.

2. EMA Guidance. Process validation for 
the manufacture of biotechnology-derived 
active substances and data to be provided 
in regulatory submissions. Committee 
for Medicinal Products for Human Use. 
April 2016.

3. EU Guidelines for GMP. Qualification 
and validation. EUDRALEX Volume 4. An-
nex 15. March 2015.

4. Castillo FC, Cooney B, Levine HL. 
Biopharmaceutical manufacturing process 
validation and quality risk management. 
Pharm Eng. 2016;36(3):82-92.

5. DiMartino M, Zamamiri A, Pipkins 
K, Heimbach J, Hamann E, Adhibhatta 
S, et al. CPV signal responses in the 
biopharmaceutical industry. Pharm Eng. 
2017;37(1):57-64.

Figure 1. Downstream purification first stages flow diagram.

IndexCriticality

7Very high

IndexImpact

3Moderate

5Middle

1None

5High

7High

1Low

3Low

Table 1. Index allocation tables for quality attributes and process parameters risk as-
sessment

Assessment criteria regarding the effect of quality attributes variability on 
patient safety and effectiveness
Failure to comply specifications causes adverse reactions of very high con-
sideration, or there is not therapeutic action at all for which the product is 
prescribed. Patient safety is compromised.

Assessment criteria regarding the effect of process parameters and/or 
variables on quality attributes

Failure to comply specifications leads to secondary effects causing discomfort 
that can be commonly assimilated, or there is limited therapeutic action. 
Patient safety is not compromised at all.

Variability impacts indirectly on quality attributes, as it can affect process 
intermediate steps that subsequently can have substantial influence on 
these. There are evidences and/or experience that a significant interre-
lation still exists.

Variability has low impact on intermediate process steps without affecting 
any quality attribute. There are evidences and/or experience that there is 
not any interrelation.

Failure to comply specifications causes adverse reactions of some signi-
ficance, but tolerable for the patient, or there is some therapeutic action 
for which the product was prescribed but still insufficient. Patient safety is 
marginally compromised.

Variability affects directly on quality attributes, even bypassing intermediate 
process steps where there are no transformations related to the parameter 
and/or variable in question. There are evidences and/or experience that 
a high interrelation exists.

Failure to comply specifications produces minor effects of very low conside-
ration without complications. Patient safety is definitely not compromised.

Variability affects process intermediate steps, but with little or no incidence 
on quality attributes. There are evidences and/or experience that interre-
lation is poor.
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Information obtained from the numeric assess-
ment was then incorporated into the cause-effect risk 
matrix as represented in table 2. Thus, the impact of 
each operation parameter in the corresponding steps/
unit operations could be numerically evaluated as a 
contribution to each CQA variability for determining 
a total rank index and next, rank indexes percentage 
from the grand total. 

A Pareto chart was subsequently elaborated by 
plotting rank indexes for each parameter in descend-
ing order at one side, and at the other side the cumu-
lative index rank percentage. Then, the well-known 
Pareto criterion 80-20 % was applied for obtaining 
a set of parameters with higher criticality, regarding 
impact on process variability for each purification 
step, which can be taken at first as a deduced design 
space. 

Multivariate methods for data analysis
Data collected from three consecutive annual manu-
facturing campaigns (identified Y1, Y2 and Y3) since 
startup of the referred technological configuration 
were arranged in a single working matrix of 1924 
elements, where rows represent the first purification 
intermediate batches and columns represent process 
parameters formerly assessed as critical. 

Given the considerable difference in range and mag-
nitude among parameters, range normalization was ap-
plied by rows, as well as auto-scaling standardization 
by columns (ratio of centered mean and the standard 
deviation) in order to avoid any prevalence [22].

On this basis, principal component analysis 
(PCA) was applied to work matrix providing di-
mensionality reduction in a few independent latent 
variables or principal components (PC), thus fa-
cilitating verification of true impact of referred pa-
rameters on process variability, as well as possible 
correlation between each other and identification 
of score outliers based on Hotelling’s T2 criterion 
representing batch unusual operations [22]. Like-
wise, PCA scores chart facilitated identification of 
batch variability patterns of annual production cam-
paigns in combination with cluster analysis [23] 
as unsupervised classification procedure, allowing 
distinguishing between operational modes to some 
extent. Furthermore, to reaffirm this differentiation, 
a supervised classification method such as soft in-
dependent modeling of class analogies (SIMCA)  
was applied [24].

The UNSCRAMBLER X version 10.4 software 
was used to run the above multivariate data analysis 
methods, which does not mean a preference among 
other computer applications.

Results and discussion

Process parameters criticality assessment
After a thorough process analysis carried out by the 
working group, a set of 18 process parameters came 
out with relative importance in first purification unit 
operations and hence considered as significant in 
process performance. Such exercise included for-
mer experience in full-scale commercial produc-
tion and scale-down studies based on IgG capture 
and anion exchange modifications for technological  

6. Demmon S, Bhargava S, Ciolek D, 
Haley J, Jaya N, Joubert MK, et al. A 
cross-industry forum on benchmarking 
critical quality attribute identification and 
linkage to process characterization studies. 
Biologicals. 2020;67:9-20.

7. Pazhayattil A, Sayeed-Desta N, Ingram 
M. Lifecycle-based process validation 
emphasizes the need for continued 
process verification. Pharm. Tech. 2018 
Supplement;(3):s22-5.

8. Rudge S. Quality risk management. 
Presentation at Center of Excellence 
Biopharmaceutical Technology Course 
Series; 2016 December 12 – 14. New 
Delhi: Indian Institute of Technology at 
New Delhi, India; 2016.

9. Mitchell M. Determining criticality-
process parameters and quality attributes: 
criticality as a continuum. In: QbD and PAT 
in biopharmaceutical development. E-book 
presented in partnership with BioPharm Int. 
September 2017. p. 3-12.

10. Hakemeyer C, McKnight N, St. John R, 
Meier S, Trexler-Schmidt M, Kelley B, et al. 
Process characterization and design space 
definition. Biologicals. 2016;44:306-18.

improvement. These parameters are summarized in 
table 3, with their corresponding description and ab-
breviations.

Subsequently, cause-effect risk matrix parameters 
were ranked and Pareto chart criticality assessed as 
illustrated in figure 2. As shown, 13 parameters were 
regarded of greater impact in process variability, 
which represent a practical approximation of design 
space characterizing the first purification process. 
They were in descending order of relevance: pH of 
eluate from protein A column (pHEL), Conductivity 
of adjusted protein A eluate for anion exchange inlet 
(CoSQ), Flow of adjusted protein A eluate to anion 
exchange (FlSQ), pH of elution solution (pHES), 
Time of viral inactivation (TINV), Flow of elution 
solution (FlES), Mass of IgG in filtrated harvest pool 
inlet (MIgG), pH of second buffer solution (pHT5), 
Conductivity of second buffer solution (CoT5), Sec-
ond wash flow of buffer solution (FlW2), First wash 
flow of buffer solution (FlW1), Conductivity of so-
lution for eluate adjustment (CoAD) and pH of first 
buffer solution (pHT1).

QA1

Id.No.

N1

FlSQ1

:

CoAD5

:

pHES

FlW2

9

14

M1

CoEQ3

:

MPAE7

:

FlW3

MIgG

11

16

CoSQ2

TINV6

FlES

FlW1

10

15

:

FlEQ4

:

pHEL8

pHT5

pHT1

CoT5

FlTE

12

17

13

18

QAn

Nn

:

:

Mn

:

:

:

:

QA2

N2

:

:

M2

:

:

:

:

Total

:

:

T1

:

:

:

:

TT

...

...

:

:

...

:

:

:

:

%Rank

:

:

PcR1

:

:

:

:

100

Table 2. Cause-effect risk matrix tabular model
Quality attributes

Description Purification step

Criticality level

Flow of adjusted protein A eluate to anion 
exchange

Anion exchange in chromatographic 
membrane

:

Conductivity of solution for eluate  
adjustment 

Eluate adjustment 

:

pH of elution solution

Second wash flow of buffer solution

Elution of protein A column

Second wash of protein A column

Parameter 1

Conductivity of buffer solution for anion 
exchange membrane equilibrium

Anion exchange in chromatographic 
membrane

Parameter 3

Mass of IgG in protein A eluate Elution of protein A column

:

Third wash flow of buffer solution 

Mass of IgG in filtrated harvest pool inlet 

Third wash of protein A column

Purification process input

Process Step/Unit Operation 1

Conductivity of adjusted protein A eluate for 
anion exchange inlet

Anion exchange in chromatographic 
membrane

Process Step/Unit Operation 2

Time of viral inactivation Acidic viral inactivation

Process Step/Unit Operation P

Flow of elution solution

First wash flow of buffer solution

Elution of protein A column

First wash of protein A column

Parameter 2

Flow of buffer solution for anion exchange 
membrane equilibrium

Anion exchange in chromatographic 
membrane

Parameter 4

pH of eluate from protein A column Elution of protein A column

Grand total

pH of second buffer solution 

pH of first buffer solution 

Conductivity of second buffer solution 

Flow of buffer solution for protein A column 
equilibrium

Second wash of protein A column

Equilibrium, first and third wash of 
protein A column

Second wash of protein A column

Equilibrium of protein A column

* T1 was calculated by the formula: T1 = N1×M1 + N2×M2 +…. Nn×Mn. PcR1 was calculated 
as: PcR1 = T1/TT ×100.

Table 3. Prior identification of first purification process parameters
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It should be noted that these parameters are mainly 
related to protein A chromatographic column wash 
and elution operations, as well as to chromatographic 
membrane anion exchange, which make them critical 
steps. Consequently, the remaining five, not having a 
potential impact on CQAs, can be considered as key 
operating parameters (KOP) with influence just on 
process performance [9]. They consisted on: Conduc-
tivity of buffer solution for anion exchange membrane 
equilibrium (CoEQ), Flow of buffer solution for an-
ion exchange membrane equilibrium (FlEQ), Third 
wash flow of buffer solution (FlW3), Flow of buffer 
solution for protein A column equilibrium (FlTE) and 
Mass of IgG in protein A eluate (MPAE). (Table 3).

Data structure modeling through PCA
Descriptive statistics and run charts applied prelimi-
narily to data (charts not shown but available) revealed 
that process parameters behave differently concerning 
their relative variability. Flows passing through chro-
matographic column matrices are fixed by automatic 
means in order to achieve an operational residence 
time for efficient exchange. Nevertheless, they are set 
differently from batch to batch, most probably condi-
tioned to MIgG entering the process, and these param-
eters are those that exhibited the greatest variability 
in the process. It is followed in significance by FlSQ 
and those parameters associated to manual operations 
and offline measurements such as pH and conductiv-
ity of prepared buffer solutions. Concurrently, there 
are others with less variability as they are more easily 
controlled such as TINV and CoSQ, the latter through 
inline measurement means.

First PCA model obtained (charts not shown but 
available) could explain 81.2 % of process variance 
with three PCs and cumulative predictive capacity of 
73.4 %. Coincidently, TINV and CoSQ parameters 
did not contribute significantly to explained variance, 
confirming what discussed before, so these can be dis-
carded for reducing unnecessary noise, the same with 
five true outliers found representing unusual behaving 
batches [19, 20]. A descriptive summary of outliers 
found are shown in table 4, before and after model 
improvement.

PCA model restructured on this basis can explain 
81.3 % of process variance and keeping an adequate 
fit with just two PCs, with a cumulative predictive 
capacity of 74.2 % according to validation variance 
computed through cross validation method, as can 
be seen in the explained variance graph in figure 3A. 
Moreover, the influence graph in Figure 3B shows six 
batches with a relative high leverage from model’s 
center by taking into account Hotelling’s T2 limit 
for regular behavior, while a single batch is far from 
model’s adjusted hyperplane due to its relative high 
F-residuals variance, which is also reflected in Table 
4. From the aforementioned, this enhanced version 
of PCA model can be considered as representative of 
data structure to an acceptable extent, and taken as a 
base for further analysis.

Regarding process parameters in the base model, 
most of them are grouped along PC1 axis with correla-
tion loading coefficients of more than 0.5, and less than 
– 0.5 in the case of FlW2, while FLES and FlW1 are in 
the negative direction of PC2. This is better visualized 

in the correlation loadings graph in figure 4 where all 
points representing process parameters are inside the 
zone between the circles, which demarcate the condi-
tion of having a relevant impact to process variability.
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Figure 2. Pareto chart for first purification parameters criticality assessment. Bars in black 
stand for the most critical process parameters deduced from 80 % Pareto distribution ac-
cording to cumulative percentage (81.2 %).

True outliers discarded to improve data structure model

Outliers after improvement, only influential to data structure model

Outliers after improvement, poorly described by data structure model

Table 4. Summary of outliers identified in annual campaigns

Campaign

Campaign

Campaign

Y2

Y2

Y2

Y3

Y2

Y2

Y3

Y2

Y3

Y3

Y3

Y3

Batch

Batch

Batch

13.06

13.35

13.33

14.34

13.55

13.08

14.25

13.34

14.55

14.06

14.54

14.33

Parameters  
involved

Parameters  
involved

Parameters  
involved

MIgG

pHT5

pHT5

pHES

pHES

MIgG

pHES

pHT5

pHES

FlW1

FlES

pHES

pHES

pHES

FlES

pHES

pHES

pHES

Associated operational event

Associated operational event

Associated operational event

Low inlet IgG mass 

pH of second wash solution to chromatographic capture way 
over limit

pH of second wash solution to chromatographic capture way 
over limit 

pH of eluate from capture over limit

pH of eluate from capture over limit

Low inlet IgG mass 

pH of eluate from capture over limit

pH of second wash solution to chromatographic capture way 
over limit

pH of eluate from capture over limit

Low first wash solution flow to capture

Low elution solution flow from capture 

pH of eluate from capture over limit 

pH of eluate from capture slightly over limit

pH of eluate from capture over limit

Low elution solution flow from capture 

pH of eluate from capture over limit

pH of eluate from capture at the highest limit

pH of eluate from capture slightly over limit
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It should be taken into account that, since startup 
and in the course of productive campaigns there was 
a modest gradual increase of MIgG to first purifica-
tion stage, yet with sustained fluctuations. At the 
same time, from Figure 4, it can be observed that it 
is inversely related to column wash and elution flows, 
where evidently operational considerations were draw 
in to guarantee a residence time increment as MIgG 
rises and vice versa.

It is also noted a group of parameters with simi-
lar contribution to PCs and visually close each other 
(highlighted with red ellipse), which denotes a signifi-
cant correlation among them, for instance pHES and 
pHEL in the case of elution, pHES and pHT1 for first 
wash and so on. Furthermore, all solutions are formu-
lated at very low ions concentration in pharmaceu-
tical purified water, which explain pHT5 and CoT5 
correlation in second wash, for instance. This should 
be examined under technological and operational con-
siderations on a case-by-case basis in order to decide 
their role in CPV monitoring plan.

Likewise, process parameters are a reflection of 
operational modes changes along process campaigns 
from year to year. The best way to analyze this is to 
interpret side by side both correlation loadings charts 
and scatter plot scores representing batch trends, or 
by integrating both in a single bi-plot as shown in 
figure 5. At glance, first year campaign Y1 is mostly 
compromised to chromatographic washes and elution 
flow changes from batch to batch, which mark a dif-
ference with subsequent years Y2 – Y3. Second and 
third campaigns are more influenced with mIgG com-
ing into the process, buffer solution parameters and 
FlSQ as well.

Batch operational modes’ distinction through 
multivariate classification methods
Such differentiation was done by using the scores 
chart representing batch trends in figure 6, in combi-

nation with cluster analysis method (dendrogram not 
shown, summarized in table 5). 

Starting campaign in Y1 clearly shows a similar 
pattern where inter-batch adjustment of FlW2 for sec-
ond wash predominates from 12.01 to 12.48, while 
end of the year batches 12.49 to 12.57 are far-off from 
that group. In these last, second wash operations set at 
lower rates prevail as a reaction to MIgG input insta-
bility and this without discarding the combined effect 
of other parameter changes. Then, the main cause of 
such batch operational mode trend lies in the staff’s 

11. Bika D, Butterell P, Walsh J, Epp K, Bar-
rick J. Topic 2 – Stage 3 Process validation: 
applying continued process verification 
expectations to new and existing prod-
ucts. ISPE Discussion Paper 2012; August 
1: p.1-36.
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Figure 5. Bi-plot of parameter loadings and scores graph.

Figure 6. Score’s graph showing annual campaigns batch patterns.
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first confrontation to IgG capture and anion exchange 
new technologies at that time, as well as the technical 
challenges for proper implementation at manufactur-
ing scale.

Also from figure 6, for the subsequent campaigns 
of second and third years the situation is far differ-
ent as MIgG production gradually increased, although 
with fluctuations inherent to cell culture perfusion 
mode [25]. According to cluster analysis (see also Ta-
ble 5) there are two more classes or group of batches 
at the right side that belong indistinctly to Y2 and Y3 
campaigns, but difficult to distinguish in those pat-
terns which parameters have more impact. This due 
to MIgG or buffer solution parameters with their in-
trinsic variability due to manual preparation, or even 
both, taking into account at this point that FlSQ has 
been defined more accurately since the end of first 
campaign.

In view of the above, the SIMCA method was 
applied in order to confirm differences among cam-
paigns. From Coomans’ graph shown in figure 7, it 
can be corroborated the particular behavior of cam-
paign Y1 as formerly explained, being identified in 
two separated group by the green dots.

It can also be verified that campaigns Y2 and Y3 
are similar regarding the operational praxis, except 
some Y2 middle of campaign batches 13.26 to 13.42 
identified by blue dots at the upper left quadrant, in-
cluding an isolated end of the year batch 13.56. This 
is due to eventual composition changes of second 
wash buffer solution affecting pHT5, which was con-
sequently reflected in protein A column eluate pHEL 
with some increase. Coincidently, MIgG fluctuations 
entering the process in that period made more compli-
cated the harvest volume pooling operations, and then 
FlES was adjusted from batch to batch under technical 
considerations in this particular case.

Continued process verification planning
In addition to the above results, process knowledge 
and experience were brought again in order to elabo-
rate a sound CPV monitoring plan. In essence, pa-
rameters with major influence on process variability 
should have a weekly follow up, while those with less 
incidences, its trending can be analyzed monthly, or 
quarterly in the case of KOP, although technological 
and operational factors could also define such fre-

Batch Batch Batch
Year 1 campaign Year 2 campaign Year 3 campaign

12.01 13.01 14.01

12.17 13.13 14.15

12.09 13.05 14.05

12.21 13.21 14.19

12.13 13.09 14.10

12.25 13.25 14.27

12.05 13.03 14.03

12.19 13.19 14.17

12.11 13.07 14.07

12.23 13.23 14.25

12.15 13.11 14.13

12.27 13.27 14.30

12.02 13.02 14.02

12.18 13.18 14.16

12.10 13.06 14.06

12.22 13.22 14.24

12.14 13.10 14.12

12.26 13.26 14.28

12.07 13.04 14.04

12.20 13.20 14.18

12.12 13.08 14.08

12.24 13.24 14.26

12.16 13.12 14.14

12.28 13.28 14.31
12.30 13.29 14.33

Class Class Class

2 0 1

2 1 1

2 1 1

2 1 1

2 0 1

0 0 1

2 0 1

2 0 0

2 0 0

0 1 1

2 2 1

0 0 0

2 1 1

2 1 0

2 0 0

0 1 1

2 1 1

0 0 1

2 1 1

2 0 0

2 0 0

0 0 1

2 1 1

0 2 1
0

Class Class Class

2 0 0

2 0 0

2 1 0

2 0 1

2 0 0

2 0 0

2 0 1

2 0 0

2 0 1

2 0 1

2 0 0

2 0 1

2 0 0

2 0 0

2 0 1

2 1 0

2 0 0

2 0 1

2 0 1

2 0 1

2 0 1

2 0 1

2 0 0

2 0 1
2 0 1

Batch Batch Batch

12.31 13.31 14.34

12.44 13.43 14.46

12.36 13.35 14.38

12.48 13.47 14.50

12.40 13.39 14.42

12.53 13.53 14.54

12.33 13.33 14.36

12.46 13.45 14.48

12.38 13.37 14.40

12.50 13.49 14.52

12.42 13.41 14.44

12.55 13.55 14.56

12.32 13.32 14.35

12.45 13.44 14.47

12.37 13.36 14.39

12.49 13.48 14.51

12.41 13.40 14.43

12.54 13.54 14.55

12.34 13.34 14.37

12.47 13.46 14.49

12.39 13.38 14.41

12.52 13.50 14.53

12.43 13.42 14.45

12.56 13.56 14.57
12.57

Table 5. Cluster analysis summary of batch patterns in score graph (equal color stand for the same class)

Figure 7. Coomans’ graph resulting from SIMCA method application for comparing 
campaigns.
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industry-0001
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quency [9]. In the case of correlated parameters, their 
monitoring weekly or monthly depends on their perti-
nence to reflect related unit operation actual state, for 
instance pHEL prevails over pHES in depicting the 
elution step status under such criterion.

Regarding flows applied to chromatographic steps, 
it was decided to keep them in a fixed value from 
batch to batch with a defined tolerance, based on data 
processing results that cover actual MIgG inlet vari-
ability, and they should also be monitored weekly or 
monthly according to their relevance in related unit 
operation. The conceived plan is summarized in Table 
6.

Even when in practice it has been successful so far 
in obtaining reliable information on process actual 
state of control and the excursions detection from nor-
mal operational conditions, it is advisable to carry out 
periodic reviews through risk analysis reissue. This is 
relevant to face possible process changes, as well as 
the analysis of data collected in the period for keeping 
the CPV plan updated.

Conclusions
The applied approach in the present work was effec-
tive in determining critical process parameters and 
inter-batch variability patterns in order to conceive a 
rational monitoring plan for continuous process verifi-
cation under scientific basis, as well as the possibility 
to disclose eventual process changes. Such features 
were congruently corroborated with the information 
from the operational incidences log of examined pro-
duction campaigns corresponding to the downstream 
first purification process under study. This leads to a 
more robust and controllable process, which can be 
traced back. Moreover, the inclusion of new steps and 
their modifications could be classified and followed 
by this methodology.

CategoryParameter

CPPpHEL

CPPTINV

CPPCoT5

KOPCoEQ

CPPFlSQ

CPPMIgG

CPPFlW1

KOPFlW3

CPPCoSQ

CPPFlES

CPPFlW2

KOPFlEQ

CPPpHES

CPPpHT5

CPPCoAD

KOPFlTE

CPPpHT1

KOPMPAE

Measurement feature Proposed trending frequency

Online from automatic control Weekly from batch-to-batch data

Offline on site Monthly from batch-to-batch data

Offline on site Monthly from batch-to-batch data

Offline on site Quarterly from at random selected 
batches data

Inline Monthly from batch-to-batch data

Offline at lab Weekly from batch-to-batch data

Online from automatic control Monthly from batch-to-batch data

Online from automatic control Quarterly from at random selected 
batches data

Inline Monthly from batch-to-batch data

Online from automatic control Weekly from batch-to-batch data

Online from automatic control Monthly from batch-to-batch data

Inline Quarterly from at random selected 
batches data

Offline on site Monthly from batch-to-batch data

Offline on site Weekly from batch-to-batch data

Offline on site Weekly from batch-to-batch data

Online from automatic control Quarterly from at random selected 
batches data

Offline on site Monthly from batch-to-batch data

Offline at lab Quarterly from at random selected 
batches data

Table 6. Summary of conceived monitoring plan for continued process verification
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